Salah Satu Persamaan Garis Singgung Pada Lingkaran

Salah Satu Persamaan Garis Singgung Pada Lingkaran

Hai, guys! Di materi sebelumnya elo sudah mempelajari tentang persamaan lingkaran.
Then,
sekarang gue akan coba jelasin ke elo tentang persamaan garis singgung lingkaran. Mulai dari rumus yang bisa elo gunakan hingga definisi persamaan garis singgung lingkaran. Oke deh, nggak usah berlama-lama, yuk langsung saja kita mulai pembahasannya!


Persamaan Garis Singgung Lingkaran

Apa sih garis singgung lingkaran? Garis singgung lingkaran merupakan garis yang menyentuh lingkaran tepat di satu titik. Maksudnya gimana, tuh? Nah, coba deh elo lihat ilustrasi di bawah ini!

Persaamaan Garis Singgung Lingkaran (Arsip Zenius)

Bagaimana? Setelah melihat gambar sepeda di atas, pasti elo udah mulai paham kan apa itu garis singgung? Yap, di gambar tersebut terlihat kalau roda sepeda bersentuhan dengan jalanan. Nah, titik sentuhan antara sepeda dengan jalanan inilah yang dinamakan garis singgung, guys!

Persamaan garis singgung lingkaran sendiri dibagi menjadi tiga jenis, yaitu:

  • Persamaan garis singgung lingkaran melalui titik pada lingkaran.
  • Persamaan garis singgung lingkaran dari gradien.
  • Persamaan garis singgung lingkaran melalui titik di luar lingkaran.
jenis persamaan garis singgung lingkaran
Jenis Persamaan Garis Singgung Lingkaran (Arsip Zenius)

Yuk, kita bahas satu persatu-satu!


1. Persamaan Garis Singgung Lingkaran Melalui Titik pada Lingkaran

Apabila menemukan soal persamaan garis singgung lingkaran melalui titik, maka elo bisa menggunakan rumus seperti di bawah ini:

Rumus Persamaan Garis Singgung Lingkaran Melalui Titik pada Lingkaran
Rumus Persamaan Garis Singgung Lingkaran Melalui Titik pada Lingkaran (Arsip Zenius)

Sekarang, coba kita kerjain contoh soal ini, yuk! Gradien garis yang menyinggung lingkaran (x-ane)two
+ (y+1)2
= 25 di titik A (4,2) adalah ….

Baca :   Alat Penopang Untuk Menyimpan Benda Tiga Dimensi Pada Pameran Adalah

Maka, elo bisa menjawabnya dengan cara sebagai berikut:

( ten-one) (x1– 1 ) + ( y+i ) (y1+ane) = 25

( ten-1) (4- 1 ) + ( y+1 ) (two+ane) = 25

3x + 3y = 25

Rumus Persamaan Garis Singgung Lingkaran dan Contoh Soal - Materi Matematika Kelas 11 41

Jadi, gradien garis yang menyinggung lingkaran (x-1)ii
+ (y+i)ii
= 25 di titik A (four,2) adalah -one.

Baca Juga:
Turunan Kedua dan Contoh Soalnya – Materi Matematika Kelas 11


2. Persamaan Garis Singgung Lingkaran dari Gradien

Oke, tadi kan kita sudah membahas persamaan garis singgung lingkaran melalui titik. Lalu, bagaimana jika elo menemukan soal yang gradiennya diketahui?

Nah, jika diketahui gradiennya maka elo bisa menggunakan persamaan garis singgung dari gradien. Untuk menghitungnya, elo bisa menggunakan rumus seperti di bawah ini.

Rumus Persamaan Garis Singgung Lingkaran dari Gradien
Persamaan Garis Singgung Lingkaran dari Gradien (Arsip Zenius)


iii. Persamaan Garis Singgung Lingkaran Melalui Titik di Luar Lingkaran

Untuk menghitung persamaan garis singgung lingkaran melalui titik di luar lingkaran, elo bisa menggunakan persamaan garis polar. Garis polar adalah garis yang menghubungkan dua titik singgung pada lingkaran.

garis polar persamaan garis singgung lingkaran
Garis Polar (Arsip Zenius)

Dengan mengetahui persamaan garis polar, maka kita bisa tahu titik singgung pada lingkaran. Caranya bagaimana? Caranya yaitu garis polar disubstitusi ke persamaan lingkaran.

Berikut adalah rumus garis polar:

  • Pusat (0,0)

teniten + yiy = r2

  • Pusat (a,b)

(xi– a ) ( x-a) + (yane– b) ( y-b ) = r2

  • Bentuk Umum

Rumus Persamaan Garis Singgung Lingkaran dan Contoh Soal - Materi Matematika Kelas 11 42

Baca Juga:
Penjumlahan dan Pembagian Polinomial – Materi Matematika Kelas xi

cta banner donwload apps zenius

Download Aplikasi Zenius

Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimalin persiapanmu sekarang juga!

icon download playstore

icon download appstore

download aplikasi zenius app gallery


Contoh Soal Persamaan Garis Singgung Lingkaran

Well,
tadi kan kita sudah membahas umus yang bisa elo gunakan untuk menghitung persamaan garis singgung lingkaran.
And then,
biar makin paham, yuk kita masuk ke contoh soal persamaan garis singgung lingkaran di bawah ini!

  1. Persamaan garis yang menyinggung lingkaran x2
    + y2
    = five di titik A (two,1) adalah ….
Baca :   Sebutkan Dan Jelaskan 5 Macam Kelainan Otot Pada Manusia

A. 2x + y = 25

B. 2x + y = 5

C. ten +2y = 25

D. 10 + 3y = v

E. 2x – y = three

Jawaban:

Diketahui: teni
= two dan y1
= 5

Persamaan garis singgung lingkaran 20ane
+ yyi
= r2

xx1
+ yy1
= 5

2x + y = five

Maka, jawaban yang tepat adalah
B.
2x + y = v

2. Salah satu persamaan garis singgung yang bergradien ii dan menyinggung xtwo
+ y2
= 5 adalah ….

A. y = 2x + 7

B. y = 2x + 5

C. y = 2x + 3

D. y = 2x + 1

E. y = 2x – 1

Jawaban:

Rumus Persamaan Garis Singgung Lingkaran dan Contoh Soal - Materi Matematika Kelas 11 43

Rumus Persamaan Garis Singgung Lingkaran dan Contoh Soal - Materi Matematika Kelas 11 44

Rumus Persamaan Garis Singgung Lingkaran dan Contoh Soal - Materi Matematika Kelas 11 45

Jadi, persamaan garis singgungnya adalah y = 2x + 5 dan y = 2x – 5. Sehingga jawaban yang tepat adalah
B.
y = 2x + 5

3. Persamaan garis singgung lingkaran x2
+ y2
= iv dari titik (2,ii) adalah ….

A. x=2 dan y=ii

B. ten=-2 dan y=-2

C. x=2 dan y=0

D. x=0 dan y=2

E. x=-2 dan y=0

Jawaban:

Karena titik (2,2) berada di luar lingkaran x2
+ y2
= 4 maka akan terbentuk garis polar.

  • Persamaan garis polar:

xiten + y1y = r2

2x + 2y = 4

x + y = 2

y = two – x

Diperoleh persamaan garis polarnya adalah y= two – x.

  • Substitusikan garis polar y = 2 – x ke dalam persamaan lingkaran untuk mencari titik pada lingkaran yang dilewati oleh garis singgung (titik singgung lingkaran).

 xtwo
+ ytwo
= iv

 102
+ (2-x)2
= 4

 x2
+ 4 – 4x – x2
– 4 = 0

two ten2
– 4x = 0

x(x – ii) = 0

x=0 atau x=two

Selanjutnya substitusi x=0 dan
x=two ke persamaan garis polar:

Untuk
x=0 maka y = two – ten = ii – 0 = 2

Untuk
10=2 maka
y
= 2 −
x
= 2 − 2 = 0

Diperoleh titik singgung lingkaran adalah (0,2) dan (2,0).

  • Substitusi kedua titik singgung lingkaran ke persamaan xanex + y1y = 4 untuk memperoleh persamaan garis singgung:

Untuk titik (0,2)

x1x + yiy = iv

0(ten) + 2y = 4

2y = 4

y = 2

Untuk titik (0,two)

xanex + y1y = 4

2x + (0)y = 4

2x = 4

x = 2

Jadi, persamaan garis singgungnya adalah
x=2 dan
y=2. Maka jawaban yang tepat adalah
A.
x=2 dan
y=2.

Baca :   Apa Yang Dimaksud Dengan Tokoh Utama

Baca Juga:
Integral Parsial dan Integral Substitusi – Materi Matematika Kelas 11

Finally,
selesai juga nih pembahasan tentang persamaan garis singgung lingkaran. Nah, bagi elo yang masih mau tahu lebih banyak tentang materi ini, elo bisa kunjungi aplikasi
Zenius
atau bisa klik
banner
di bawah ini, ya!

belajar materi pelajaran matematika di zenius

Salah Satu Persamaan Garis Singgung Pada Lingkaran

Source: https://www.zenius.net/blog/rumus-persamaan-garis-singgung-lingkaran-contoh

Check Also

Kata Yang Tepat Untuk Melengkapi Teks Tersebut Adalah

Kata Yang Tepat Untuk Melengkapi Teks Tersebut Adalah SOAL DAN PEMBAHASAN MATERI TEKS PROSEDUR MATA …